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Abstract:
The integration of machine learning (ML) and artificial intelligence (Al) into medicine is

reshaping disease prediction and diagnosis by enabling earlier detection and stronger clinical
decision support. A key challenge, however, is class imbalance in medical datasets, where the
scarcity of diseased cases compared to healthy ones leads to biased models and higher risks of
misdiagnosis. This review explores imbalance-handling strategies ranging from traditional
data-level approaches (undersampling, oversampling such as SMOTE and ADASYN) to
algorithm-level solutions (cost-sensitive learning, ensemble methods) and hybrid frameworks.
It also highlights recent advances with generative models (GANs, VAES) and transfer learning
that offer new opportunities for synthetic data generation and fairer predictions. By drawing
insights across diverse applications—including cardiac, cancer, renal, and infectious
diseases—the paper discusses both the promise and limitations of current methods,
emphasizing the urgent need for reliable imbalance-handling solutions in medical Al.

I. INTRODUCTION
The connection between data science and healthcare brings revolutionary changes to medical

disease diagnosis methods as well as management and forecasting. The utilization of machine
learning (ML) and artificial intelligence (Al) technology makes it possible for medical
professionals to establish predictive models based on enormous medical data to reinforce early
diagnosis procedures and clinical treatment decision-making[1]. The dominant problem within
this field involves unbalanced data distribution across datasets. Real-world clinical databases
often present a disease pattern where patients with the condition are much fewer than those
who do not have it which produces erroneous model predictions. The research investigates
different methods to handle dataset imbalance particularly through an examination of their
practical applications along with their constraints and their performance in disease predictive
modeling[2].
A. Context of Predictive Disease Classification in Healthcare
Medical conditions are now predicted via predictive modeling based on patient information
following the introduction of Artificial Intelligence (Al) and Machine Learning (ML)
technology in healthcare[3].The identification of future illness development in patients through
diagnostic elements including symptoms along with lab reports and imaging data and genetic
markers makes up predictive disease classification. The method proves useful in detecting both
long-term medical conditions and uncommon diseases and new infections. These models
depend on excellent training data quality and proper data distribution for their clinical
effectiveness and operational performance.
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B. Prevalence of Class Imbalance in Medical Datasets

The healthcare domain faces widespread class imbalance because datasets normally contain
many more records of healthy patients and common disease cases than those of rare and critical
diseases. The datasets that focus on breast cancer contain numerous benign cases while having
restricted numbers of malignant cases[4]. The data collection for confirmed infectious disease
cases generally shows less abundance compared to negative or asymptomatic cases. The
unbalanced distribution of data causes learning abnormalities because ML models do not
properly identify traits from minority classes.

C. Impact of Imbalance on ML Model Performance

The performance of models deteriorates when they handle unbalanced datasets because the
metrics for minority class evaluation such as recall and precision and F1-score suffer. Standard
ML algorithms pursue overall accuracy optimization leading to learning models that show
preference for the majority class. The high number of false negatives occurs when disease
detection models incorrectly determine that no disease exists when it does. Errors of this nature
present significant medical risks because of their dangerous nature[5]. The correct management
of class imbalance stands as both a vital technical necessity and essential requirement for

developing ethical and effective healthcare artificial intelligence systems.
II. NATURE AND IMPACT OF IMBALANCED DATA IN DISEASE

PREDICTION

Medical and clinical datasets present the most severe form of class imbalance problems. The
datasets display an unbalanced structure because they contain many more examples from the
dominant group than from the less prevalent group. Machine learning models become less
effective when dealing with class imbalance issues particularly when used for disease
prediction and classification tasks.
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A. Causes of Imbalance
Multiple reasons exist which result in the development of healthcare dataset imbalance.

e Rarity of Diseases:The occurrence rate of diseases like genetic disorders and rare
cancers together with some infectious diseases remains naturally limited throughout the
population[7]. The collection of sufficient representative data becomes challenging

because of this condition.

e Low Sampling from Minority Classes:The clinical environment restricts minority-class
sample collection because of practical and ethical restrictions. The medical staff
reserves invasive tests for situations when their clinical assessment demonstrates their

need.

e Data Collection Bias:Electronic Health Records (EHR) alongside other data sources
originate from general hospitals and clinics which specialize in rare diseases which

distorts the data distribution.

e Temporal or Demographic Skews:The inclusion of new diseases and age-specific or
geographically limited diseases becomes limited in datasets that operate on broader

scales.
B. Consequences of Imbalanced Data

The diagnostic quality of predictive models strongly suffers when data contains class
imbalance[8]. The following adverse effects appear because of class imbalance:

e Biased Predictions:Most predictive algorithms optimize total accuracy through overall
prediction which creates a fit that prioritizes the dominant class. The learning process

fails to properly recognize minority class instances when this situation occurs.

e Misdiagnosis Risks: The detection of diseases faces significant risks from misdiagnosis
when false negative results occur because such errors delay proper treatment and

worsen patient health outcomes.

e Low Sensitivity and Specificity:Models developed from imbalanced data become
unreliable during critical clinical situations because they demonstrate low sensitivity

and specificity to the minority class.
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e Poor Clinical Trust:Medical professionals have lower confidence in Al systems which
repeatedly fail to detect uncommon severe medical issues unless these systems provide

clear explanations for their diagnostic decisions.
C. Case Examples from Cardiac, Cancer, and Infectious Disease Datasets

The medical field faces specific difficulties because of class imbalance which produces
performance distortions and unreliable models during critical healthcare operations[9]. The
minority class which contains rare but important medical conditions receives limited
representation during disease prediction tasks because this problem leads models to favor
the majority class and overlook critical cases. A summary of representative data examples
from cardiac, cancer and infectious disease fields appears in Table 1 which demonstrates

imbalance characteristics and their effects on prediction accuracy and clinical results.

TABLE |. REFERENCE TABLE

Mustapha | Cardiac Electronic Rare cardiac Models Applying
& Diseases | health records | events (e.g., biased class
Ozsahin for myocardial towards imbalance
(2024) [10] cardiovascular | infarction) form | majority handling
event minority (healthy) methods
prediction class, significantly
resulting in improved
low recall for | sensitivity
critical without
events sacrificing
overall
accuracy
Chen et al. | Cancer Breast cancer | Malignant cases | Standard Use of
(2018) [11] | Diagnosis | datasets with underrepresente | classifiers advanced
predominance | d compared to | yield low resampling
of benign cases | benign detection techniques
rates for improved
malignant detection
tumors, rates of
risking malignant
delayed tumors
diagnosis substantially
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Mulugeta | Renal Patient data Graft failure ML models | Ensemble
et al. Transplan | from Ethiopian | cases biased learning
(2023) [12] | t Risk renal transplant | significantly toward combined
recipients fewer than predicting with
successful graft success, | imbalance
grafts missing early | handling
warnings of | improved
failure prediction
of graft
failure risks
Wang et Chronic COPD patient | Severe COPD Class Use of
al. (2023) | Pulmonar | data with skew | cases are imbalance imbalance-
[13] y Disease | towards mild minority causes aware
or non-COPD models to algorithms
cases under-detect | enhanced
high-risk early
patients identificatio
n of severe
COPD cases
Rodriguez | Infectious | Small and Confirmed Models Synthetic
-Almeida | Diseases | imbalanced positive cases overfit data
et al. infectious rare compared | majority generation
(2022) [14] disease to negatives class; poor using GANs
datasets generalizatio | improved
non model
minority robustness
class and
minority
class
prediction

I11. TAXONOMY OF TECHNIQUES TO HANDLE IMBALANCED
DATA

Medical datasets containing unbalanced data distributions lead machine learning algorithms
to develop bias that misidentifies crucial yet uncommon disease conditions. Various
strategies exist to counter this issue which researchers group into data-level and algorithm-
level approaches as well as hybrid solutions and recent deep generative models with transfer
learning. The taxonomy system organizes a variety of approaches specifically designed to

support predictive disease classification.

A. Overview of Technique Categories
The techniques for managing imbalanced datasets fall into five primary categories:
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TABLE Il. CLASSIFICATION IMBALANCE HANDLING APPROACHES[15]

Modify training data to balance class distributions before
learning begins

Adapt the model training process to account for class
imbalance explicitly

Combine data and algorithm-level strategies for synergistic
improvements

Use deep learning-based generative techniques to synthesize
realistic minority class data

Use pre-trained models or cross-domain knowledge to
improve classification in imbalanced datasets

The benefits and barriers within each category depend on the combination of available data

quantity and clinical framework in addition to the need for model interpretation.

B. Data-Level Approaches
The training data class distribution undergoes modifications through data-level methods to

combat skewness. The methods used in data-level approaches are undersampling and
oversampling and synthetic sample generation.

(a) Undersampling
The technique makes the majority class smaller to create a balanced data distribution.

e Random Undersampling selects random majority class samples for removal yet it

discards important information in the process.

e Tomek Links identifies and removes borderline majority cases which are in close

proximity to minority examples to create better decision boundary definitions.

e The Edited Nearest Neighbours (ENN) method removes data points that are difficult

to classify through nearest neighbor measurements.

e The Cluster Centroid technique substitutes majority instances with cluster centroids

to maintain data distribution in a condensed form.

(b) Oversampling
Through this technique the number of minority class samples grows more numerous[16].
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e The basic random oversampling method duplicates minority class instances yet

creates the risk of overfitting the model.

e The SMOTE (Synthetic Minority Oversampling Technique) method develops

artificial data points by connecting points from minority class groups.

e Borderline-SMOTE directs its oversampling efforts to the border areas where

minority classes meet.

e The ADASYN (Adaptive Synthetic Sampling) method produces additional synthetic

data for minority instances that are challenging to classify correctly.

e The Safe-Level SMOTE technique assigns safety levels to samples during neighbor

synthesis to prevent noise contamination.

. Algorithm-Level Approaches

The internal learning processes of machine learning models receive modifications through
algorithm-level approaches to achieve effective class imbalance management. The most
common approach in machine learning is cost-sensitive learning that gives higher weight to
errors made while classifying minority samples. Healthcare practitioners widely apply this
approach in medical imaging together with electronic health record (EHR)-based disease

prediction because it maintains performance on vital yet uncommon outcomes.

Ensemble methods represent an essential category because they demonstrate exceptional
ability to process imbalanced datasets. The combination of bagging with balanced
bootstrapping in Balanced Random Forests trains individual base learners using more
balanced subsets of the input data. The boosting algorithms including AdaBoost and
XGBoost become more attentive to minority classes when they implement class weight
integration. EasyEnsemble and BalanceCascade boundaries create several balanced data
subsets which enables ensemble classifiers to find better generalization while preserving

their ability to detect minority class patterns.

VNSGU Journal of Research and Innovation (Peer Reviewed)

ISSN:2583-584X

Special Issue October 2025

69



Support Vector Machines (SVMs) as well as Decision Trees and Neural Networks use class
weight adjustment as a popular approach in machine learning algorithms. The algorithms
achieve improved minority class detection because their penalty mechanism strengthens
after misclassification occurs. Using cost-sensitive learning in cancer diagnosis and
Alzheimer's disease prediction achieves superior results than conventional resampling

methods that protect precision and recall.

. Hybrid Approaches

The combination of data-level and algorithm-level approaches in hybrid strategies provides
optimal imbalanced setting performance by achieving optimal classification results. The
system effectively learns minority class patterns through Synthetic Minority Oversampling
Technique (SMOTE) combined with cost-sensitive SVMs that maintains model
generalizability. The model benefits from both strategies to process insufficient minority

data while preserving its essential decision boundaries.

The most effective hybrid method in imbalanced data classification combines oversampling
or undersampling methods with ensemble systems. The precise nature of these diagnostic
systems becomes essential since false disease predictions can result in severe consequences
thus making these techniques particularly effective for diagnosis systems. When ensemble
models and balanced training subsets are used together they provide strong sensitivity
performance[18].

The last approach to manage class imbalance in healthcare analytics is through pipeline-
based models which implement systematic data management strategies. The first step
involves applying SMOTE for data balancing then moving onto train GBMs or deep CNNs
as complex models. Recent research in healthcare predictive analytics supports the increase
in usage of these pipeline models because these allow deep learning architecture access

while protecting the identification of crucial yet unusual patient classes.

. Generative Models and Transfer Learning
(a) Generative Models

Generative Adversarial Network (GAN):

Deep generative models serve as effective tools which generate high-quality synthetic data
to address class imbalance problems in minority classes. GAN stands as one of the most
widely used methods within this domain. Standard GANs prove effective at creating
synthetic medical images together with structured electronic health record (EHR) data that

serve to extend minority classes. The conditional GANs (cGANS) system builds upon
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standard GANs by allowing the generation process to receive class labels which leads to the
creation of relevant synthesized data. Specialized models BAGAN and SMOTifiedGAN use
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Variational Autoencoders (VAES):

The Variational Autoencoder (VAE) represents another essential generative method that
learns condensed latent data representations from medical sources. VAEs have shown
effective results for creating synthetic data from rare disease cases alongside filling gaps in
clinical information databases. These models enable flexible generation of plausible patient
data through their framework that preserves the initial minority class distribution in the
original data. Generative models have demonstrated their effectiveness in medical
applications like skin lesion classification and tumor segmentation through improved

performance evaluation for rare minority cases.

(b) Transfer Learning

The application of transfer learning provides an effective solution to class imbalance through
the use of pretrained models trained on extensive general-purpose databases. The models
developed through ImageNet and MIMIC-1I1 undergo specific fine-tuning to adapt to
particular imbalanced medical application needs. The method transfers knowledge from
extensive domains to specific underrepresented clinical areas without requiring extensive

annotated datasets.

The concept of transfer learning produces beneficial outcomes in diagnosing early-stage
lung cancer together with pediatric radiology and genetic disease classification applications.
Modern domain adaptation methods establish connections between the pretraining source
domain features and the fine-tuning target domain features to close the domain gap. The
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techniques optimize representation learning to match target data better which leads to better

predictive results particularly when dealing with minority classes in imbalanced datasets.

TAXONOMY OF TECHNIQUES TO HANDLE IMBALANCED
DATA

A. Undersampling Techniques

The majority class dataset gets reduced through undersampling to achieve a size that comes
near the minority class count. This methodology reduces class bias while achieving better
minority class sensitivity but may result in discarding vital predictive information that the
model requires[20]. The selection of intelligent undersampling methods proves better than

basic sample deletion strategies.

The imbalance ratio (IR) for dataset D=DmajU Dmin calculates as the ratio of Nmaj t0 Nminsee

2):

IR = 2mal 55 q 1)

Noin
The objective of undersampling methods is to modify Nmaj until the imbalance ratio reaches

IR=1 while maintaining important data points.

1. Tomek Links

Fig. 4. Tomek Link for imbalance data[21]

A Tomek Link consists of two examples (xi,xj) when xi belongs to Dmaj and xj belongs to

Dmin and satisfy as shown in (2):

kaeD,d(xl-,xj) < d(x;,x)
and d(xl-,xj) < d(xj,xk) (2
The distance metric d(-) most often uses Euclidean distances in this definition.
A Tomek Link develops when two samples from different classes identify each other as their
closest neighbors which indicates they reside near the boundary decision. The removal of
majority class instance xix_ixi from this pair helps decrease class overlap together with noise

reduction.
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Heart disease diagnosis benefits from Tomek Link analysis because it helps identify patients
whose ECG signals resemble borderline cases between healthy and diseased patients. When
borderline major class instances are removed it enables better detection of minority class
characteristics including rare heart conditions such as arrhythmogenic right ventricular

cardiomyopathy.

2. Edited Nearest Neighbour (ENN)
ENN removes the sample xeDx \in DxeD when the majority vote of its kkk-nearest

neighbors produces a label different from its actual class[22].

Mathematically (3):
If v, # mode(yNN,(x),then remove X (3)
Where:
« Yx s the label of sample x
» The k-nearest neighbors of the sample x make up the set NNK(x).
ENN eliminates noisy and misclassified instances from the majority class when they deviate
from local neighborhood patterns.

The prediction of Parkinson’s Disease through healthcare data can be adversely affected by
small changes in voice frequency or tremor data. ENN eliminates cases that stand outside typical
boundaries and instances from the majority class which produce confusion during model
understanding.

3. =Cluster Centroid Method
The unsupervised clustering technique (K-means is typical) performs on the majority class
to create centroids which substitute each cluster group[23]. Formally:

Given:
» Majority class samples Dmaj
*  Number of desired centroids k

Apply k-means clustering see (4):

min k

ul,...uk i=1 ZXECi le - .uillz (4)

Cluster Icontains all samples represented by Ci and its centroid value is pi.

The process involves substituting cluster groups of similar majority samples with their

representative average (centroid) to maintain the distributional shape of the majority class.
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The Healthcare Application utilizes gene expression datasets for cancer classification to
maintain essential information from dense clusters of non-cancerous patients using centroid

sampling methods.

TABLE Il1l. COMPARATIVE OVERVIEW OF UNDERSAMPLING TECHNIQUES [24]

Removes Nearest- Heart Enhances Ineffective  on
borderline neighbor disease decision dense
examples distance (ambiguous | boundaries overlapping
ECG classes
signals)
Removes k-Nearest Parkinson’s | Noise High
misclassified | Neighbors ,  diabetes | reduction, computational
points detection better cost
generalizatio
n
Replaces K-means Gene Preserves Risk of
groups with | clustering expression | distribution, | oversimplificatio
representativ in  cancer | reduces size | n
e points classificatio | efficiently
n

B. Oversampling Techniques
The distribution of medical data samples often becomes uneven when dealing with rare
diseases or new condition stages that contain few instances of the minority class. Oversampling
methods solve this issue by growing the minority class instances so the model can recognize its
characteristics without developing biases toward the majority class. The following list presents

major oversampling strategies which prove effective for healthcare Al research.

s ria Training

A
2 A
i, 254", + Dataset 4 SakA

A At 4 LT
A A
Imbalanced dataset ~ Generating New synthetic data points SMOTE Dataset
Majority class data points A Minority class data points A Synthetic minority class data points

Fig. 5.0versampling Techniques[25]
a) Random Oversampling
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Random Oversampling stands as one of the first and easiest methods for managing class
imbalance problems. The technique produces new minority class examples through random
sample duplication until it reaches the required class balance. Random Oversampling remains
straightforward to implement yet produces overfitting because the model views repeated

minority class instances which diminishes its generalization ability.

The positive class minority problem has been addressed through this approach in healthcare
disease detection systems such as diabetic retinopathy and pneumonia diagnosis. The approach
yields better sensitivity but fails to provide novel information for the model which results in

constrained performance improvements in complex dataset conditions.

b) SMOTE (Synthetic Minority Oversampling Technique)

SMOTE stands as one of the most popular advanced oversampling techniques which creates
new synthetic minority class instances instead of making duplicates. SMOTE creates new
plausible minority class examples through interpolating existing minority samples with their
nearest neighbors inside their original class space. The model establishes better generalization

abilities since it does not depend on memorizing actual data points.

The medical domain has implemented SMOTE successfully to classify breast cancer and
predict liver disease and analyze cardiovascular risks. The recall and F1-score of minority
classes improves when using SMOTE because this technique enhances dataset diversity thus
reducing false negative outcomes that are vital in diagnostic models.

c) Borderline-SMOTE and ADASYN
Standard SMOTE encounters two major limitations because it produces synthetic samples
both inside safe areas and noisy regions which led developers to create multiple enhanced

versions.

Borderline-SMOTE generates new samples from minority class instances that exist near the
decision boundary because these examples present the highest risk of misclassification. The
model gains increased discrimination power in critical classification zones because synthetic

samples are created exclusively

within these areas. In clinical early disease detection situations such as cancer and sepsis
diagnosis the Borderline-SMOTE method proves beneficial because it targets challenging

feature areas.

The Adaptive Synthetic Sampling method known as ADASY N allocates additional synthetic
data creation to minority instances which demonstrate difficulty in learning because they exist
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in areas dominated by majority class neighbors. The approach develops an active data-driven
sampling technique which first targets hard-to-learn cases. Healthcare professionals employ
ADASY N to predict sepsis onset while diagnosing rare diseases by concentrating model training

on important yet scarce medical situations.

d) Safe-Level SMOTE

Safe-Level SMOTE implements risk-awareness through its ability to generate synthetic
samples exclusively in dense minority-class areas which are less prone to overlapping with
majority-class regions. The risk-awareness component in this variant prevents the generation of

misleading samples that SMOTE typically produces in noisy or overlapping areas.

The tumor classification process using MRI or CT scans benefits from Safe-Level SMOTE
because it produces synthetic instances exclusively in ‘safe’ areas which maintains minority

class integrity and enhances class representation.

TABLE IV. COMPARATIVE INSIGHTS [26]

Duplicate Used in diabetic | Simple and fast Overfitting risk

existing and pneumonia

minority classification

samples

Create synthetic | Common in | Improves May generate

samples using | cancer, liver | generalization, noisy or

interpolation disease, and | reduces bias ambiguous
heart disease samples

Generate Helpful in early | Focuses on | Ignores central

synthetic  data | disease critical (easier)

near the | detection classification minority

decision regions samples

boundary

Adaptive focus | Effective in | Prioritizes Risk of

on  harder-to- | sepsis and rare | challenging but | amplifying

learn samples condition important noise
prediction instances

Generate onlyin | Used in brain | Avoids generating | Needs  safe-

safe,  reliable | tumor detection | samples in noisy | level parameter

minority class | via imaging overlap regions tuning

regions
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Oversampling stands as a crucial method to handle the class imbalance challenge that arises
during disease predictive classification. Random Oversampling remains simple to execute yet
the advanced techniques of SMOTE and its versions Borderline-SMOTE and ADASYN and
Safe-Level SMOTE deliver sophisticated approaches for enhancing minority class learning. The
selection process for oversampling methods depends on both dataset attributes along with
medical application specifications. The implementation of oversampling requires special
attention in sensitive medical fields including oncology, cardiology and infectious disease
modeling to produce clinically valid and trustworthy prediction results.

V. DEEP GENERATIVE MODELS FOR DATA AUGMENTATION AND
TRANSFER LEARNING

The increasing application of artificial intelligence in medicine shows a critical data
imbalance issue that impacts disease predictive classification. Improvements in model fairness
and sensitivity gained by means of conventional sampling methods such as SMOTE and
ADASYN fail to hold original data distribution patterns in high-dimensional unstructured
spaces that consist of medical images and time-series data. Deep generative models, specifically
Generative Adversarial Networks (GANs) and Variational Autoencoders (VAESs), have been
found to be useful as data augmentation and representation learning tools. These modeling
techniques allow for the learning of complex healthcare data distributions and generate synthetic

data samples that fill gaps in sparse classes effectively.

A. Generative Adversarial Networks (GANS)

The two neural networks composing GANs operate through the generator and discriminator
which engage in a minimax game. The adversarial training process lets the generator create new
data points which the discriminator must identify between real and synthetic instances. The
adversarial training process enables the generator to create data instances which closely match

the original dataset characteristics[27].

Standard GAN vs Conditional GAN (cGAN):

Standard GANs produce unstructured data without restrictions leading to ambiguous class

outputs in their generated samples.

Both the generator and discriminator of Conditional GANs (cGANS) receive additional
labels or conditions so they can generate data while observing specific classes. The capability
of generating specific data types proves useful for healthcare applications when building well-

balanced predictive models through targeted image creation (such as cancer-positive images).
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Application in Disease Prediction:

The application of cGANs in medical imaging has generated synthetic images of rare

conditions for brain tumors and diabetic retinopathy which expanded medical datasets to

enhance classifier accuracy. The use of such settings produces enhanced minority class recall

results alongside better F1-score metrics according to research findings.

a)

Applications in Disease Image Synthesis

The tool has gained extensive popularity in medical imaging applications to produce realistic

depictions of rare disease manifestations from small training sets. For example:

b)

GAN-generated chest X-rays serve as a tool for dataset balancing when detecting

pneumonia.

The use of cGANs for skin lesion image synthesis enables better melanoma

classification models in dermatology practice.

Artificial data from these samples enables models to become both precise and less

sensitive to the dominant class.

Balanced GAN (BAGAN), SMOTifiedGAN

The problem of data imbalance has driven researchers to develop advanced GAN variants

including:

The Balanced GAN (BAGAN) system produces additional minority class examples for
dataset balancing without altering the original data distribution. BAGAN generates

samples that improve minority class detection rates without creating a biased model.

The hybrid model SMOTifiedGAN merges GANs and SMOTE features to generate
new samples although it retains the distribution of original data. The approach produces
additional diverse and realistic samples which specifically benefit structured medical

datasets including patient records and sensor information.

The two methods deliver effective results that boost classification precision when used to

identify rare cardiac occurrences and detect epileptic seizures and screen for retinopathy

conditions.

B. Variational Autoencoders (VAES)
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Probabilistic Variational Autoencoders function as two separate components to transform
data into abstract latent vectors and afterward recover this information. VAEs learn from
reconstruction loss along with regularization terms while GANs use adversarial loss for their
learning process. The method produces smooth continuous latent spaces that allow generating

new data instances through sampling[28].

Probabilistic
Encoder Latent Decoder

Input Data Encoded Data Reconstructed Data

Fig. 6. Variational Autoencoders (VAES) for imbalance data[29]

Learning Data Distribution:

VAE systems obtain true data distribution information through learning latent variable
models. The interpretability and control capabilities of VAES surpass those of GANs. VAEs
demonstrate ideal functionality in situations where understanding data production plays a
critical role because of their generative capabilities in synthetic data generation applications

such as electronic health record (EHR) synthesis or gene expression profiling.

(@) Use in Healthcare Synthetic Data Generation
VAE technology works successfully in multiple healthcare field applications [30]:

e Researchers employed VAEs in EHR-based disease modeling to produce synthetic
patient records of rare conditions such as Parkinson’s and ALS because their scarcity

stems from privacy restrictions and demographic constraints.

e VAEs create biological plausible gene expression profiles for cancer research

subgroups that have limited representation in medical studies.

e VAESs generate new instances of time-series data including ICU monitoring or EEG

signals which enhances model robustness for abnormal patient conditions.

VAEs enable healthcare applications to meet data privacy standards because they produce

synthetic information which reduces the likelihood of patient identification.
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VI. CONCLUSION

The problem of class imbalance throughout disease predictive classification affects both

medical decision processes and patient wellness and Al system reliability in healthcare. Classic
balancing methods of undersampling and oversampling are powerful tools for imbalance
handling but create issues by causing information loss and overfitting problems. Cost-sensitive
learning solutions and ensemble methods provide better performance though they require
special calibration to perform best in different medical environments. The application of deep
generative models including GANs and VAES now presents new opportunities to create top-
quality synthetic minority class samples while transfer learning enables the use of information
from large datasets. Medical data imbalance remains a complex problem which no individual
technique can solve completely. Researchers should direct their attention to developing context-
aware solution combinations using various strategies which retain clinical readability alongside
bias reduction. Data science progress must depend on strong partnerships between doctors,
specialists, and data experts who will ensure both the technical success and ethical alignment

and patient benefits for different patient demographics.
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